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1. Introduction.-In this note we shall show how two programs announced
earlier may be extended and partially unified by means of the concept of an "ergodic
groupoid." The first of these programs1 began with a generalization of the Laplace
transform to locally compact commutative groups and involved a notion of analy-
ticity for functions defined on the direct product of a connected locally compact com-
mutative group with the vector space of all of its one-parameter subgroups. Some
ten years later an extension of this first program was described2 in which the de-
pendence on group theory was removed, certain connections with ergodic theory
were brought out, and differential notions other than analyticity were included.
The second program grew out of our work on the problem of relating the unitary
representations of a noncommutative separable locally compact group to those of a
normal subgroup. The "ergodic case" of this problem suggests that every ergodic
action of a separable locally compact group G be regarded as defining a "virtual
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subgroup" of G which defines the action just as a closed subgroup H of G defines
the transitive action of G on G/H. As described briefly on pages 652-654 of the
notes to our 1961 colloquium lectures,3 one can develop a theory of virtual sub-
groups which is parallel in many ways to the theory of locally compact groups.
The notion of ergodic groupoid (defined below) allows us to define a virtual group

as a "similarity class" of ergodic groupoids and develop a theory of generalized
groups which does not require them to occur as (virtual) subgroups of conventional
groups. An ergodic groupoid for which every element is uniquely determined by its
left and right units is said to be principal. Principal ergodic groupoids may be
thought of as "ergodic equivalence relations." Refining and generalizing the
notion of C- ergodic lacing (defined in ref. 2), we are led to a notion which differs
from that of C- manifold in having "extra global structure." This extra global
structure is defined by an ergodic equivalence relation, and the theory of virtual
groups is applicable to it.

2. Ergodic Groupoids and Equivalence Relations.-Let S be a set. Let 8 be a
subset of S X S which defines an equivalence relation in S. Let us introduce a
multiplication in 8 by setting (S1,82) (83,84) = (81,84) whenever 82 = 83 and declaring
the product to be undefined when 82 H$ 83. With this (not everywhere defined)
multiplication, 8 satisfies all of the axioms for a Brandt groupoid4 except the final
one stating that any two units are the left and right units of a single element. It
will be convenient to change Brandt's terminology (as has been done by others) and
use the term "groupoid" to denote the more general object obtained by omitting
the final axiom. (A groupoid may also be defined as an abstract category in which
every map has an inverse.) The units of 8 are just the pairs s,s and so correspond
one to-one to the elements of S. Moreover, 81,82 e 8 if and only if si,si and 82,82 are
the left and right units, respectively, of the same element of 8. Thus, the pair S,8 is
determined by 8 and its groupoid structure. 8 is a principal groupoid in the sense
that for a given ordered pair of units there is at most one groupoid element having
these as left and right units, respectively. Clearly every principal groupoid is ob-
tainable in this way from an equivalence relation. Now let if be any groupoid
which is also a (an analytic) Borel space.6 We shall say that 5f is a (an analytic)
Borel groupoid if the two structures are so related that (i) the domain of definition
OD of the product is a Borel subset of 5f X 5, (ii) Z1, Z2 -0 Z1Z2 is a Bore] function from
fD to i, (iii) z - z-l is a Borel function from if to if. In any groupoid zz-l is the left
unit of z, and z'-z is the right unit of z. Thus, if 7r(z) = zz-1, then or is a Borel func-
tion mapping if onto the set Sg of all units, and S5 is a Borel subset of W. Let
V(z) = 7r(z),7r(z-1). Then sP is a Borel map of if onto a subset of Sg X S5 which
defines an equivalence relation in Sg. The mapping s, is one-to-one if and only if
if is a principal groupoid and in any case is a homomorphism of if onto the principal
groupoid defined by the indicated equivalence relation. If G is a separable locally
compact group and G acts on S so as to convert it into an analytic Borel G space,
then S X G becomes an analytic Borel groupoid if (s1,x1) (s2,x2) is defined when and
only when saix = 82 and then is equal to (s1,xlX2). This groupoid is principal if and
only if sx = s implies x = e whenever s E S (e is the identity of G.)

Let Au be a finite measure6 in the analytic Borel groupoid if. Let 4(E) = Ou(ir-
(E)) for all Borel subsets E of Sg. As is well known,7 there exists an assignment
(unique almost everywhere with respect to ,a) of a measure A, to each 7r-j(s) such
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that for every Borel set F C 9: we have p.(F) = Jsf8 Us(F n 7r-'(s))du(s). Chang-
ing jI to another measure with the same null sets does not alter the null sets of Az
or those of the It. Thus, every measure class8 C in 1: defines a unique measure class
C in Ss and (almost everywhere) a unique measure class C, in 7r1(s). Notice now
that for each z in 5, the mapping x -- zx is a one-to-one Borel function from r-1
(z-1z) to 7r-1(zz-1). If there exists a null set N in Sg such that for all z in 9F with
zz-'oN and z-lzfN this map carries the measure class C,-1, onto the measure class
Cz8-1, we shall say that C is left invariant. If C is left invariant and invariant under
a z-1, we shall say that it is invariant. An invariant C will be said to be ergodic
if no real valued Borel function f on S which is not C almost everywhere constant
can have the property that f(z-'z) = f(zz-1) for C almost all z in i. If C is invari-
ant and ergodic, then the pair 5, C will be called an ergodic groupoid. If the ergodic
groupoid 5,C is principal (so that 5S is defined by an equivalence relation in So), we
may obtain a measure class Ca' in the equivalence class of s by applying the mapping
Z -0 7r(z -1) to the measure class C8 in 7r- (s). Because C is invariant it follows that
C81' = C81' whenever s1 and s2 are equivalent. Thus, an invariant measure class C
in 3r defines a measure class C in S5 and a measure class in each equivalence class;
conversely, C and the C/' determine C. When we wish to emphasize these facts
about principal ergodic groupoids, we shall call them ergodic equivalence relations.
THEOREM 1. Let G be a separable locally compact group and let S be a standard

Borel G space. Make S X G into a Borel groupoid as indicated above. Let C1 be a
measure class in S and let C2 be the measure class of Haar measure in G. Then C1 X
C2 is invariant with respect to the groupoid structure of S X G if and only if C1 is invari-
ant in S under the G action. If C1 X C2 is invariant, then it is ergodic if and only if C,
is ergodic in S under the G action.
THEOREM 2. Let i, C be an ergodic groupoid and let So be a Borel subset of SS; of

positive C measure. Let 5Y r So denote the set of all z e 5F with 7r(z) e So and r(z'-) e So.
Then C restricted to 5F [ So converts it into an ergodic groupoid which is principal when-
ever IF is principal.
Theorems 1 and 2 assure us of the existence of many examples of ergodic groupoids

and equivalence relations. If the So of Theorem 2 differs from S by a set of c
measure zero, we shall call ff [ So an inessential contraction of 3YC.

3. Virtual Groups.-Let 51,C1 and 52,C2 be ergodic groupoids and let 4 be a
Borel function from 5, to 52. We shall say that 4) is a strict homomorphism if (i)
4)(ZO)4)(Z2) is defined and equal to (zz2) whenever Z1Z2 is defined, and (ii) if Sa, does
not have a single equivalence class whose complement is of C2 measure zero, then
-1(E) is a C1 null set whenever E is a Borel subset of Ss: which is a C2 null set. +

denotes the restriction of 4) to Sw,. We shall say that 4 is a homomorphism if its
restriction to some inessential contraction is a strict homomorphism. Let 4 be a
(strict) homomorphism from 51,C1 to 12,C2 and let V/i be a (strict) homomorphism
from a2,C2 to 93,C3. Then the composite mapping X,6 04 is easily seen to be a
(strict) homomorphism of 9Y1,Cl to 9Y3,C3. We shall say that the strict homomor-
phisms 4)I and 4)2 of 5lCl into 92,C2 are strictly similar9 and write (Pi P(2 if there exists
a Borel map 0 of Sg, into 52 such that for all s in S the right and left units of 0(s) are
4,0(s) and +2(8), respectively, and 0(zz-1)4)(z) = 42(z)0(z'1z) for all z in 91. We
shall say that two homomorphisms 41 and 4)2 are similar and write 41 -- 4)2 if they
have strictly similar restrictions to a common inessential contraction of al,C1. It
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is not hard to show that similarity and strict similarity are equivalence relations
and that #1 40)1 is (strictly) similar to #2 4)2 if 4), and Ai, are (strictly) similar to 02
and #2, respectively. Let 01 be a homomorphism of 51,C1 into 52,C2 and let 42 be
a homomorphism of 52,C2 into 91,C1. If 42 40)1 and i 40)2 are both similar to the
relevant identities, we shall call the pair 41,4) a similarity of Y1,Ci with 5. ,C2 and say
that the two ergodic groupoids are similar. By a vit tual group we shall mean a
similarity class of ergodic groupoids. Similarities between ergodic groupoids
"commute" with similarities between homomorphisms. Consequently, we may
think of a similarity class of homomorphisms as being a homomorphism between
the corresponding virtual groups. The following two theorems are actually special
cases of a general theorem about homomorphisms of ergodic groupoids into groups.
The general theorem will be formulated and proved in one of the detailed papers
which will follow this announcement.
THEOREM 3. Let H1 and H2 be closed subgroups of the separable locally compact

groups G1 and G2. Let Sj denote the coset space Gj/Hj and convert Si X G( and S2 X
G2 into ergodic groupoids as above. Then these ergodic groupoids are similar if and
only if H1 and H2 are isomorphic as topological groups. Moreover, the similarity
classes of homomorphisms of Si X G, into S2 X G, correspond one-to-one in a natural
way to the conjugacy classes of continuous homomorphisms of H1 into H2.
THEOREM 4. Let G be a separable locally compact group and let C1 and C2 be ergodic

invariant measure classes in the analytic Borel G spaces S1 and S2. Let i; denote the
groupoid associated with Sj X G so that 5j,,Cj is an ergodic groupoid for j = 1,2. Let
4j denote the homomorphism s,x x of 5j,Cj into G. Suppose that there exists a
similarity +1,#2 of :1,C, with 5:2,C2 such that 01 is similar to 42 #01. Then there exist
invariant Borel null sets N1 and N2 in S1 and S2, respectively, and a one-to-one Borel
mapping f of S1-N1 on S2-N2 such that f(sx) = f(s)x for all s,x e S1-N1 X G.

It follows from Theorem 4 that each ergodic action of G is determined to within
an obvious equivalence by a certain virtual group and a homomorphism of this
virtual group into G; thus, so to speak, by a "virtual" subgroup of G. Theorems 3
and 4 lend support to the view that virtual groups constitute a natural generaliza-
tion of locally compact groups and may be expected to share many of their proper-
ties. The author plans to develop the theory of virtual groups in some detail in
subsequent publications.

4. Measures in Ergodic Equivalence Relations.-Let E be a Borel subset of S X S
defining an equivalence relation in the analytic Borel space S and let C be a measure
class in 8 converting it into a principal ergodic groupoid. Let tZ be a a finite member
of C and let v be any a-finite member of C. Applying the decomposition theorem
referred to above to a finite member of C and working in an obvious manner with
Radon Nikodym derivatives, one finds measures pi in the 7r-I(s) such that 1A =
fi,idv(s). The i, are determined uniquely almost everywhere by ,u and v; changing
v merely changes each us by a multiplicative constant. We shall say that the pair
1Au is invariant if I = sA,, for almost all pairs sl,82 in 8, and A is carried into itself by
the map S1,82 82 81.

THEOREM 5. If , v is an invariant pair, then , and v determine one another up to a
multiplicative constant. If , v is an invariant pair and a is any positive Borel func-
tion, then IA',v' is an invariant pair where >'(E) = fcEa(s)dv(s) and MA'(F) = fF07-
(S1) u(s2)dM(sls2).
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COROLLARY. Let s -- ii," be the assignment of measures to the equivalence classes
of S defined by an invariant pair ,utv. Then ,u is determined by this assignment up to a
multiplicative constant. Choosing this constant once and for all one has a "natural"
one-to-one correspondence between the possible assignments s ,U and the members
v of C.

5. A Generalization of C- Manifolds.-Let S,8 be as in the preceding section
and let each equivalence class in S under E be given the structure of a C- manifold.
Let 6R be the ring of all real valued Borel functions on S whose restriction to each
equivalence class is a C- function. Assume the given assignment to be such that
6R separates points so that the assignment is actually determined by (R. Let C0
denote the measure class in the equivalence class of s defined by its C- manifold
structure, that is, the class whose restriction to each sufficiently small neighborhood
is that of the measures defined by the nonzero n forms (where n is the dimension
of the manifold). Let C be a measure class in 8. We shall say that the quadruple
S,8,C(R is a C- ergodic equivalence relation if S,8,C is an ergodic equivalence relation
which admits an invariant pair and for C almost all s in S we have C, = C$R.
One can construct a large class of examples as follows. Let S,8,C be obtained

from the action of a group G as indicated in Theorem 2. Let G be a Lie group and
let C contain a measure which is invariant under the group action. Then each
equivalence class is a G orbit and inherits a C- structure from that of G. It is not
obvious that the ring 61 always separates points but it is easy to see that it does in
numerous special cases, e.g., whenever S is a C- manifold on which G acts smoothly.

Let S,8,C,61 be a CW ergodic equivalence relation. Then each 5 E S is contained
in a unique C- manifold M,. Let V, denote the tangent space to M, at s. We
shall call V, the tangent space to S at s. We may now define vector and tensor
fields on S just as in ordinary differential geometry. The contravariant vector field
L taking s into L, will be said to be a Borel vector field if for every f E (R the function
L(f) taking s into L&(f) is a Borel function on S. If L(f) is a member of (R, we shall
say that L is a Ca vector field. We define Borelness and being CO for other kinds of
vector and tensor fields in an analogous fashion. Many notions of ordinary dif-
ferential geometry extend in an obvious fashion to C- ergodic equivalence relations.
For example, if f is a member of 6R, then df is the C- covariant tensor field (one form)
such that (df),(v) = fe(s) where v e V, and f, is the action of v on f.

It is important to notice that a CO ergodic equivalence relation is rather far from
being the product of a measure space and a C- manifold. This is partly because of
the implications of ergodicity. For instance, let f be a member of 61 such that df =
0. Thenf must be constant on each equivalence class and hence, by ergodicity, must
be constant almost everywhere on S. To illustrate the assertion of the introduc-
tion about "extra global structure," let our C- ergodic equivalence relation be such
that each component C- manifold is diffeomorphic to En. Let W be a Cr-one form
such that dW = 0. Then on each equivalence class there exists a C- function f
with df = restriction of W to the class. The f for each class is unique up to an addi-
tive constant. To find a member F of 6 such that dF = W we must choose these
constants so that the resulting function on S is a Borel function on S. There are
many examples showing that this is not always possible. Thus, the measure theo-
retic structure of S,8,C can have the same kind of an effect on the global differential
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geometry of S,8,C,GR as a nonvanishing first Betti number has on that of a CO
manifold..

In the integration of differential forms we have another respect in which CO
ergodic equivalence relations have global properties transcending those of the com-
ponent C- manifolds. Let w be a Borel n form on S where n is the common dimen-
sion of the equivalence classes. Let it be positive with respect to an orientation.
Then co defines a unique member v, of each C, and v, depends only upon the equiva-
lence class of s. Since S,6,C admits an invariant pair, the assignment s v, is
associated with an essentially unique member of C. Hence, modulo the choice of a
single arbitrary constant, we obtain a natural one-to-one correspondence between
the members of the measure class C on S and the positive Borel n forms on S.
Hence, it makes sense to speak of the integral of an n form over S or any Borel
subset of S. More generally we can define Ca maps of m dimensional C- ergodic
equivalence relations into n dimensional ones and integrate m forms over such maps.
It seems likely that one can formulate and prove an analogue of Stokes' theorem.
Given a Riemannian metric in a C- ergodic equivalence relation, one has a natural

associated positive n form and hence (up to a multiplicative constant) a natural
measure IA in S. The formal Laplace Beltrami operator defined by the metric
carries with it a corresponding notion of harmonic function and defines a symmetric
operator in £2(S,M). Interesting questions arise concerning the relationship be-
tween the spectral properties of the operator, the existence of harmonic functions
on S, and the nature of the associated ergodic equivalence relation. In a similar
manner practically every branch of analysis which is concerned with relating local
differential properties to global ones suggests a family of questions about C- ergodic
equivalence relations. We hope to investigate some of these questions in later
publications.

6. Applications to Ergodic Theory.-An ergodic flow has associated with it an
ergodic equivalence relation and hence a virtual group. In many (if not in all)
cases it will also be associated with a unique one-dimensional C- ergodic equivalence
relation. Group theory and differential geometry thus suggest a vast array of
questions to ask about flows. One can hope that one will discover useful invariants
of flows in this fashion and thus make progress in the difficult problem of classifying
ergodic flows.

7. Remarks.-(a) In measure theoretic questions it is often useful to eliminate
null sets by formulating everything in terms of the Boolean algebra obtained by
factoring out the ideal of null sets from the Boolean algebra of all Borel subsets of a
given space. On the other hand, in thus banishing points, one loses a conceptual
and technical aid of some importance. Our strategy at the moment is to postpone
a serious attempt to formulate everything in terms of Boolean algebras until the
theory has been further developed and is better understood in its present form.
Nevertheless, it is useful to keep the Boolean algebra point of view in mind, es-
pecially when one is doubtful about the "right way" to define a concept involving
exceptional null sets.

(b) One can of course adapt the definitions of sections 2 and 3 to the groupoids
defined by G spaces and equivalence relation spaces S where S is a topological space
rather than a measure space. We have not yet explored the consequences of taking
this point of view in topology in any detail. However, we have come upon one
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application which seems to be worth mentioning. Let ci be an open covering of a
topological space X and let each member of the covering be such as to admit only
trivial fiber bundles. Let X0 denote the set of all pairs O,x where 0 e 91,x e 0 and
topologize X0 so that for each fixed 0 the map 0,x -- x is a homeomorphism of its
domain with 0 and the set of all O,x is open in X0. Let us introduce an equivalence
relation in X0 by setting 01,x, equivalent to 62,x2 whenever xi = x2. Then X is
homeomorphic to the space of all equivalence classes. Let 8 denote the set of
ordered pairs defining this equivalence relation and regard 8 as a topological group-
oid. Then the similarity classes of continuous homomorphisms of 8 into a topologi-
cal group H correspond one-to-one in a natural way to the equivalence classes of
principal bundles overX with group H. This fact is new at most in formulation. I
am indebted to R. S. Palais for pointing out that it is simply a reformulation of the
theorem connecting coordinate bundles and fiber bundles in section 2 of Steenrod's
book. 10 On the other hand, it seems to be a useful way of looking at the connection
in question and to be a suggestive way of thinking about fiber bundles and their
properties. For example, if one decides to study the linear representation theory of
the "virtual group" associated with the groupoid 8 and to construct the ring of all
characters, one is led in a straightforward way to define the Grothendieck ring
K(X) of the space X. On the other hand, one must not press the group analogy too
far in the case of similarity classes of topological groupoids. The ergodicity condi-
tion in section 3 plays a very important role, and similarity classes of groupoids are
much less "grouplike" when it is missing.

(c) In his work on the foundations of differential geometry, C. Ehresmann has
introduced a very general and abstract notion of local structure." In defining and
developing this notion he has been led to deal extensively with groupoids and to de-
fine topological groupoids, topological categories, and even groupoids and cate-
gories with additional structure defined by an abstract category. Though this
work is different from ours in both aim and spirit (and moreover is not concerned
with measure theory), there are points of contact. In particular, the device of
turning a product S X G into a groupoid occurs in Ehresmann's work in the more
general context in which G is a category "acting" on S and S X G is turned into
another category. We are indebted to S. Sternberg for calling our attention to
Ehresmann's work after reading a preliminary draft of this note. We are similarly
indebted to R. J. Blattner for calling our attention to related work of Y. H. Clifton
and J. W. Smith.12 These authors are concerned with the following question.
Let X be a manifold and let there be given a foliation of X. Let X be the set of all
leaves. Then the natural quotient topology in X may be so degenerate that the
only open sets are the empty set and the whole space. Can one find a substitute for
X that plays the role played by X in the more tractable case in which the foliation
is a fibering? Clifton and Smith propose a substitute which has a significant
cohomology theory and reduces to X when the foliation is a fibering. Now a C0.
ergodic equivalence relation is a sort of foliation in which one has replaced the
topological structure in the containing space by a measure theoretic one. The as-
sociated virtual group has space-like properties-in particular a cohomology theory.
To the extent that this virtual group plays the role of the "topological object"
of Clifton and Smith, there is a parallel between part of section 5 of this paper and the
work of these authors. On the other hand, our virtual group is certainly different



VOL. 50, 1963 MATHEMATICS: G. W. MACKEY 1191

from their topological object-even in their context-since it does not depend on any
topological structure in the underlying space. Moreover, it is possible that there
are further differences. A closer study of the relationship would seem to be de-
sirable. Apart from the parallel just described, the program announced in section
5 seems to have little in common with that apparently contemplated by Clifton
and Smith.

* Part of the work announced in this note was done while the author was a fellow of the John
Simon Guggenheim Foundation.
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